翻訳と辞書
Words near each other
・ Generalized Pochhammer symbol
・ Generalized Poincaré conjecture
・ Generalized polygon
・ Generalized processor sharing
・ Generalized Procrustes analysis
・ Generalized pustular psoriasis
・ Generalized quadrangle
・ Generalized quantifier
・ Generalized randomized block design
・ Generalized relative entropy
・ Generalized Riemann hypothesis
・ Generalized second-price auction
・ Generalized selection
・ Generalized semi-infinite programming
・ Generalized signal averaging
Generalized singular value decomposition
・ Generalized spectrogram
・ Generalized star height problem
・ Generalized suffix tree
・ Generalized symmetric group
・ Generalized System of Preferences
・ Generalized taxicab number
・ Generalized Timing Formula
・ Generalized Tobit
・ Generalized tree alignment
・ Generalized trichoepithelioma
・ Generalized trigonometry
・ Generalized TTL security mechanism
・ Generalized vaccinia
・ Generalized valence bond


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generalized singular value decomposition : ウィキペディア英語版
Generalized singular value decomposition

In linear algebra, the generalized singular value decomposition (GSVD) is the name of two different techniques based on the singular value decomposition. The two versions differ because one version decomposes two (or more) matrices (much like higher order PCA) and the other version uses a set of constraints imposed on the left and right singular vectors.
==Higher order version==
The generalized singular value decomposition (GSVD) is a matrix decomposition more general than the singular value decomposition. It is used to study the conditioning and regularization of linear systems with respect to quadratic semi-norms.
Let \mathbb = \mathbb, or \mathbb = \mathbb.
Given matrices A \in \mathbb^ and B \in \mathbb^, their GSVD is given by
:A=U\Sigma_1 (X, 0 ) Q^
*
and
:B=V\Sigma_2 (X, 0 ) Q^
*
where U \in \mathbb^,V \in \mathbb^, and Q \in \mathbb^ are unitary matrices, and X \in \mathbb^ is non-singular, where r = rank(()). Also,
\Sigma_1 \in \mathbb^ is non-negative diagonal, and \Sigma_2 \in \mathbb^ is non-negative block-diagonal, with diagonal blocks; \Sigma_2 is not always diagonal. It holds that \Sigma_1^T \Sigma_1 = \lceil\alpha_1^2, \dots, \alpha_r^2\rfloor and \Sigma_2^T \Sigma_2 = \lceil\beta_1^2, \dots, \beta_r^2\rfloor, and that \Sigma_1^T \Sigma_1 + \Sigma_2^T \Sigma_2 = I_r. This implies 0 \le \alpha_i,\beta_i\le 1.
The ratios \sigma_i=\alpha_i/\beta_i are called the ''generalized singular values'' of A and B. If B is square and invertible, then the generalized singular values ''are'' the singular values, and U and V are the matrices of singular vectors, of the matrix AB^. Further, if B = I, then the GSVD reduces to the singular value decomposition, explaining the name.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generalized singular value decomposition」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.